College Algebra

TEST 1 Solution

Score

Fall 2014

_/100

NAME: Please print

SHOW ALL YOUR WORK IN A NEAT AND ORGANIZED FASHION

Course Average_

No Decimals No mixed numbers No complex fractions No boxed or circled answers Questions 1-40 are each worth one-half point.

- 1. T F A linear equation in one variable is an equation which can be written in the form y = mx + b.
- 2. T F Addition is a unary operation.
- 3. **T** F Two equations are equivalent if they have the same solution sets.
- 4. T F The expression 3x + 7 has a solution set.
- 5. T **F** $\{3,4,8\} \cup \{2,5,6,7\} = [2,8]$
- 6. T F The interval [-2, 0] contains rational numbers and irrational numbers.
- 7. T **F** If A, B, and C are the solution sets of a linear equation in one variable and its two corresponding inequalities, then $A \cap B \cap C = R$.
- 8. **T** F If A, B, and C are the solution sets of a linear equation in one variable and its two corresponding inequalities, then $A \cup B \cup C = R$.
- 9. **T** F If 3x + 5 is added to both sides of an equation, the new equation is equivalent to the original equation.
- 10. T **F** $\{2,3\} \subset (2,3)$
- 11. T F To say 3 is a solution of an equation means the same as saying {3} is the solution set for that equation.
- 12. **T** F An equation is a mathematical statement which contains an = symbol.
- 13. **T** F The product of a complex number and its conjugate is its norm.
- 14. **T** F Both the real component and the complex component of a complex number are real numbers.
- 15. T F The complex component of a complex number is a complex number.
- 16. A formula must be an equation.
- 17. A binary relation is a **comparison** of two operands.
- 18. When considering an equation $3x^2 + 5x + 7 = 0$ we should also consider its siblings $3x^2 + 5x + 7 < 0$ and $3x^2 + 5x + 7 > 0$.
- 19. Definitions in mathematics are stipulative
- 20. In mathematics we use **deductive** reasoning.
- 21. The graph of an equation in one variable is drawn on the Real number line.
- 22. The graph of an equation consists of all the points, and only those points, whose coordinates are **solutions** of the equation.
- 23. An equation is frequently called the **boundary** equation because its graph forms a **boundary** between the graphs of the corresponding inequalities.
- 24. A conditional equation is an equation which is **true** when some real numbers are substituted for the variables and is **false** when some real numbers are substituted for the variables.
- 25. Write the conjugate of -2 4i -2 + 4i
- 26. What is the complex component of $\frac{4}{3} \frac{5}{9}i$

- 27. A= {1,2,3,4,5} and B is the interval (2, 4], then $A \cap B = \{3, 4\}$ Use set notation.
- 28. The process to solve a linear equation in one variable is to generate a sequence of equations each **equivalent** to the previous equation until a simplest equation is obtained.
- 29. Write the formula for the area of a triangle $A = \frac{1}{2}bh$
- 30. The linear equation x 5 = 0 and the quadratic equation $x^2 10x + 25 = 0$ have the same solution set $\{5\}$. Therefore the two equations are **equivalent**
- 31. Write the formula for the area of a circle $A = \pi r^2$
- 32. Write the opposite of -3 + 2i? 3 2i
- 33. Write the norm of 3 + 5i? $3^2 + 5^2$
- **34.** $N \cap (-3,5] = \{1, 2, 3, 4, 5\}$
- 35. Write set builder notation for the set of real numbers described as the interval from a to b which contains a but does not contain b. $\left\{x \mid a \leq x < b\right\}$
- 36. Use interval notation to write the set $\{x \mid -2 < x \le 5\}$ (-2, 5].
- 37. The phrase "to factor" means to write as a **product**
- 38. Transitive Property: If a, b, and c are real numbers such that a = b and b = c, then a = c
- 39. To convert a subtraction problem to an addition problem one adds the minuend and the **opposite** of the **subtrahend.**
- 40. The set of integers is a subset of the set of rational numbers.

For Questions 41 – 50 each part is worth one-half point

In the following multiple choice questions, any number of choices may be correct. In each question at least one choice is correct. Circle ALL correct choices.

- 41. Which of the following are linear equations in one variable?
 - a. 5x + 1 + 2x + 12
 - b. x + 7 < 2x + 12
 - c. $x^2 = 3$
 - **d.** x + 5 = 2x
 - e. $\frac{2x}{5} + \sqrt{3} = \frac{3}{\sqrt{2}}x$
 - **f.** $\frac{2x-3}{4} = \frac{5-7x}{6}$
 - $\mathbf{g.}\sqrt{8} = \mathbf{x}$
 - h. $\frac{x-3}{4} = \frac{2-3x}{x}$
 - i. $8 = \sqrt{x}$
 - j. $\sqrt{3x+1} + 8 = x$

- 42. The graph of a conditional linear equation in one variable:
 - a. Is on the number line
 - b. Is in the Cartesian coordinate system
 - c. Is a line
 - d. Is a dot
 - e.Is an interval
 - f. Is a ray
- 43. If both sides of an equation are multiplied by a (the same) positive real number:
 - **a.** The resulting equation is equivalent to the original equation.
 - **b.** The two equations have the same solution sets.
 - c. The two equations might have different solution sets.
 - d. The two equations are equal.
 - e. The resulting equation is a simplest equation.

44. If the number k cannot be written as a quotient (fraction) of integers, then k is

	<u> </u>	, ,	
a. a Natural Number		d. a Rational Number	
b. a Whole Number		e. an Irrational Number	
c. an Integer		f. A Real Number	

45. If the number k can be written as a quotient (fraction) of integers with non-zero denominator, then k is

· · · · · · · · · · · · · · · · · · ·	-,,
a. a Natural Number	d. a Rational Number
b. a Whole Number	e. an Irrational Number
c. an Integer	f. A Real Number
	g.A Real Number

46. The solution set of an identity equation in one variable may be

a. The empty set	d. We must solve the equation to figure out how
b. A set containing one number	many solutions there are
c. A set containing two numbers	e. All real numbers R

47. If the solution set for an equation is the empty set, then

a. The equation is an identity	d.The equation has no solution
b. The equation is a conditional equation	e. Every Real number is a solution
c. The equation is a contradiction	

- 48. If both sides of an equation are multiplied by a non-zero real number
 - **a.** the resulting equation is equivalent to the original equation.
 - **b.** the two equations have the same solution sets.
 - c. the two equations might have different solution sets.
 - d. the two equations are equal.
 - e. the resulting equation is a simplest equation.
- 49. If both sides of an inequality are multiplied by a non-zero real number
 - a. the resulting inequality is equivalent to the original equation.
 - b. the two inequalities have the same solution sets.
 - c. the two inequalities might have different solution sets.
 - d. the two inequalities are equal.
 - e. the resulting inequality is a simplest equation.

- 50. Consider the inequality $4x^3 + 5x^2 7x + 19 < -11$. Suppose S is its solution set. Assume that a true statement results if the real number k is substituted into the inequality $4x^3 + 5x^2 - 7x + 19 < -11$. Which of the following are true statements?
 - **a.** k is a solution of $4x^3 + 5x^2 7x + 19 < -11$. b. k is a solution of $4x^3 + 5x^2 7x + 19 = -11$.

 - d. $k \notin S$

- e. $\{k\} \subset S$
- $f. \{k\} = S$
- g. $k \subset S$
- $h. \{k\} \in S$

Questions 51 – 60 are each worth 5 points.

51. The graph of an equation in one variable is What is the solution set for that equation?

- 52. Suppose $A = \{1, 2, 3, 4, 5\}$
 - a. Write all subsets of A which have no elements There is one subset with no elements Ø
 - b. Write all subsets of A which have 3 elements

$$\{1.2.3\}, \{1,2,4\}, \{1,2,5\}, \{1,3,4\}, \{1,3,5\}, \{1,4,5\}, \{2,3,4\}, \{2,3,5\}, \{2,4,5\}, \{3,4,5\}$$

53. In the Venn diagram below, shade $(A \cap B) \cup C$

54. The graph of an inequality in one variable is shown at the right. What is the solution set for that inequality? Use Interval notation.

$$(-\infty, -5) \cup [3,7)$$

55. Complete the statement of The Law of Trichotomy

If a and b are real numbers then exactly one of the following is true:

- i. $\mathbf{a} < \mathbf{b}$
- ii. $\mathbf{a} = \mathbf{b}$
- iii. $\mathbf{a} > \mathbf{b}$

56. Compute the multiplicative inverse of 5 - 3i.

$$\frac{5+3i}{5^2+3^2} = \frac{5+3i}{34}$$

- **57.** Compute the product $(2 + i)(3 5i) = 6 10i + 3i 5i^2 = 11 7i$
- 58. Change the difference (3-5i)-(2-6i) to an addition problem (do not bother computing either the difference or the sum). (3-5i)-(2-6i)=(3-5i)+(-2+6i)

This could be written vertically with arrows.

59. Change the quotient $(3 - 5i) \div (2 - 6i)$ to a multiplication problem (do not bother computing either the product or the or the quotient).

$$(3 - 5i) \div (2 - 6i) = (3 - 5i) \left(\frac{2+6i}{2^2+6^2}\right) = (3 - 5i) \left(\frac{2+6i}{40}\right)$$

60. The graph of a particular linear equation ax + b = c in one variable is It is also known that 0 is not a solution of ax + b > c

a. Sketch the graph of ax + b > c on this number line

- b. Sketch the graph of ax + b < c on this number line
- c. Use interval notation to write the solution set for ax + b > c (4, ∞)
- d. Use set builder notation to write the solution set for $ax + b < c \ \left\{ x \mid x < 4 \right\}$
- e. Use the roster method to write the solution set for ax + b = c {4}