Meramec College Algebra Chapter 3 Solution TEST 3

Summer 2010

NAME: _____Score_____/100

Please print

SHOW ALL YOUR WORK IN A NEAT AND ORGANIZED FASHION

Course Average_

No Decimals No mixed numbers No complex fractions No boxed or circled answers Questions 1-20 are 2 pts each.

- 1. The y-intercept of the graph of a quadratic function $f(x) = ax^2 + bx + c$ is (0, c).
- 2. **T** F A term is a letter, a number, or a product of letters and numbers.
- 3. **T** F The degree of a polynomial is the degree of the leading term.
- 4. **T** F The sum of two polynomials is a polynomial.
- 5. T F The sum of two terms is a term.
- 6. T F If the multiplicity of a real zero is an odd number the graph intersects but does not cross the x-axis at that zero.
- 7. A quadratic function is a function whose rule may be written in the form $f(x) = ax^2 + bx + c$ where a, b, and c are real numbers and a is not zero.
- 8. The discriminant of a quadratic function $f(x) = ax^2 + bx + c$ is b^2 -4ac.
- 9. The numerical part of a term is called the **coefficient** of the term.
- 10. If a polynomial contains a term which is strictly numerical, it is called the **constant** term of the polynomial.
- 11. A **polynomial** is a term or a sum of terms in which all variables have whole number exponents.
- 12. If a complex number is a zero of a polynomial function f, then its **conjugate** is also a zero of the function f.
- 13. Division Algorithm: If a and b are natural numbers then there are unique natural numbers q and r such that $\mathbf{a} = \mathbf{bq} + \mathbf{r}$ with $0 \le \mathbf{r} < \mathbf{b}$.
- 14. If f is a polynomial function such that f(a) < 0 and f(b) > 0, then f has an **x-intercept** (a real zero) between a and b.
- 15. The graph of a polynomial function is a **smooth continuous** curve with no **sharp** corners.
- 16. If $\frac{p}{q}$ is a rational zero of a polynomial function with integer coefficients, then the numerator p must be a divisor of the **constant** term and the denominator q must be a divisor of the **leading** coefficient.
- 17. If the remainder r in the division algorithm is 0, then we say that the polynomial p is **divisible** by the polynomial d.

If f is a polynomial function whose rule is given by

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$

then the following statements are equivalent.

- a. k is a real zero of the function f.
 - 18. k is a solution of the polynomial equation $a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = 0$.
 - 19. $\mathbf{x} \mathbf{k}$ is a factor of the polynomial $a_n \mathbf{x}^n + a_{n-1} \mathbf{x}^{n-1} + \dots + a_1 \mathbf{x} + a_0$.
 - 20. (k, 0) is an **x-intercept** of the graph of the function f.

Questions 21 - 32 are each worth 5 pts.

21. Find the vertex of the graph of the function whose rule is $f(x) = x^2 + 5x + 6$. Show the steps

The vertex is
$$\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right) = \left(-\frac{5}{2}, f\left(-\frac{5}{2}\right)\right) = \left(-\frac{5}{2}, -\frac{1}{4}\right)$$

Note
$$f(x)=x^2 + 5x + 6 = (x+2)(x+3)$$

So that $f\left(-\frac{5}{2}\right) = \left(-\frac{5}{2} + 2\right)\left(-\frac{5}{2} + 3\right) = \left(-\frac{1}{2}\right)\left(\frac{1}{2}\right) = -\frac{1}{4}$

22. What are the x-intercepts of the graph of the function whose rule is f(x) = (x + 3)(x - 5)(x - 2)?

The x-intercepts are (-3, 0), (5, 0), and (2, 0)

23. Consider the polynomial function whose rule is $f(x) = -43x^5 + 281x^3 - 97x^2 + 2x - 302$. Determine the end behavior of the graph of f by completing the following:

As
$$x \to +\infty$$
, $f(x) \to -\infty$

As
$$x \to -\infty$$
, $f(x) \to +\infty$

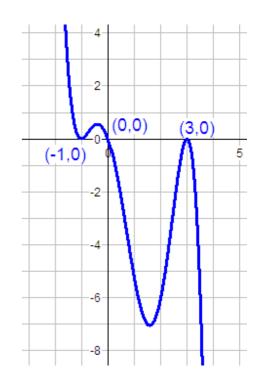
24. Consider the polynomial function whose rule is $f(x) = 5x^4 + 7x^2 - x + 9$. Determine the possible rational zeros of f by completing the following:

$$p \in \{\pm 1, \pm 3, \pm 9\}$$

$$q \in \left\{ \pm 1, \pm 5 \right\}$$

$$\frac{p}{q} \in \left\{ \pm 1, \pm 3, \pm 9, \pm \frac{1}{5}, \pm \frac{3}{5}, \pm \frac{9}{5} \right\}$$

25. Which of the following are rules for polynomial functions? Identify your choices by placing an X in the box preceding the option.


$$\int f(x) = 3x^{-5} - 8x^{\frac{1}{2}}$$

$$f(x) = \frac{3x^4 - 2x^5 + 4x - 2}{2x^3 + 5}$$

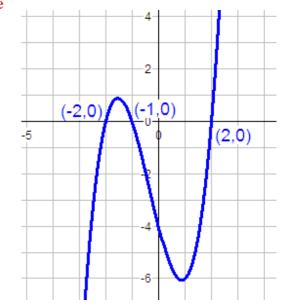
26. Use the Intermediate Value Theorem to prove that the graph of the function whose rule is $f(x) = x^5 - x^3 - 1$ has an x-intercept between 1 and 2. Both calculations and words of explanation are required.

$$f(1) = 1^5 - 1^3 - 1 = 1 - 1 - 1 < 0$$
 and $f(2) = 25 - 23 - 1 = 64 - 8 - 1 > 0$

Therefore, by the Intermediate Value Theorem, there is an x-intercept between 1 and 2.

- 27. An analysis of a function f reveals the following facts.
 - a. f is a polynomial function of degree 5.
 - b. The real zeros of f are -1, 0, and 3.
 - c. The multiplicity of -1 is 2.
 - d. The multiplicity of 3 is 2.

As
$$x \to +\infty$$
, $f(x) \to -\infty$


e. As
$$x \to -\infty$$
, $f(x) \to +\infty$

Sketch the graph of f.

- 28. Circle all the words which can be used to correctly complete the sentences.
 - a. f(x) = 7 is the rule for a (constant linear quadratic identity polynomial) function.
 - b. $f(x) = x^2 + 2x + 1$ is the rule for a (constant linear quadratic identity polynomial) function.
 - c. $f(x) = x^5 + 5x + 6$ is the rule for a (constant linear quadratic identity **polynomial**) function.
 - d. f(x) = x + 4 is the rule for a (constant **linear** quadratic identity **polynomial**) function.
 - e. f(x) = x is the rule for a (constant **linear** quadratic **identity polynomial**) function.

- 29. Consider the polynomial function f whose rule is $f(x) = (x+1)^5(x^2-2)^2$.
 - a. What is the degree of f? 9
 - b. What is the leading coefficient of f? \mathbf{x}^9
 - c. What is the constant term of f? 4
 - d. What are the zeros of f? -1, $\sqrt{2}$, $-\sqrt{2}$
 - e. How many times does the graph of f cross the x-axis? Once
- 30. Consider the function whose rule is $f(x) = x^3 + x^2 4x 4$. The zeros of f are -2, -1, and 2. Sketch the graph of f.

As
$$x \to +\infty$$
, $f(x) \to +\infty$
As $x \to -\infty$, $f(x) \to -\infty$

31. Consider the function whose rule is $f(x) = x^3 + x^2 - 4x - 4$. The zeros of f are -2, -1, and 2. Factor the polynomial $x^3 + x^2 - 4x - 4$

$$x^3 + x^2 - 4x - 4 = (x + 2)(x + 1)(x - 2)$$

32. Perform the indicated long division: