> +-* bjbj$$ 8BF|F|8:d$^ FfffAAA;======$f aAAAAAaffvkkkAFff;kA;kkkf@tk'0k!!kk!AAkAAAAAaaG$AAAAAAA!AAAAAAAAA : Important Properties of Linear Equations in Two Variables
Definition: A linear equation in two variables is an equation which may be written in the form y = mx + b where m, and b are real numbers.
The graph of a linear equation in two variables is a non-vertical line with slope m and y-intercept b. Every non-vertical line is the graph of a linear equation in two variables of the form y = mx + b
Because lines and linear equations in two variables are simple concepts, there are relatively few questions one can ask about them.
The only possible questions are:When given a linear equation in two variables: 1.Write the equation in the form y = mx + b or standard form.2.Sketch the graph of the equation ?3.What is the y-intercept of the graph of the equation ?4.What is the x-intercept of the graph of the equation?5.Is the graph increasing or decreasing ?When asked to determine a linear equation in two variables:6. Determine the linear equation in two variables whose graph has a given slope and a given y-intercept.7. Determine the linear equation in two variables whose graph has a given slope and contains a given point.. 8. Determine the linear equation in two variables whose graph contains two given points.
To answer these questions:
1) To obtain the slope-intercept form if the equation is not in the slope-intercept form, solve the equation for y. To obtain the standard form, add expressions to both sides to obtain Ax + By = C
2) Process: To sketch the graph of a linear equation in two variables, plot any two points whose coordinates satisfy the equation and draw the line passing through the two points. Plotting the two intercepts is generally a good idea.
3) The y-intercept occurs when x = 0. Therefore the y-intercept is b.
4) The x-intercept occurs when y = 0. Therefore we find the x-intercept by solving mx + b = 0 for x.
5) Whether the graph of a linear equation in two variables is increasing or decreasing depends on the leading coefficient (the slope m) when the equation is written in the slope-intercept form y = mx + b.The graph is increasing if m > 0 The graph is decreasing if m < 0 The graph is increasing if the slope is positiveThe graph is decreasing if the slope is negative
The graph is horizontal if m = 0
The graph is horizontal if the slope is zero
If two independent pieces of information are known about a line L it is possible to determine the linear equation in two variables whose graph is that line L. The most important fact used in this process is:
Definition: A point is on the graph of an equation if and only if its coordinates satisfy the equation.
That is, a point (t, k) is on the graph of an equation f if and only if substituting t and k into the equation yields a true statement.
How Does This Work?
Case 1: (Question 6) If the slope and y-intercept are known, replace m and b in y = mx + b with the known values.
Case 2: (Question 7) If the slope and a point are known, replace m in y = mx + b with the known value for m. Then use the fact that the point is on the graph to obtain an equation with b as the only unknown. Solve for b and substitute it into the partially determined equation.
Case 3: (Question 8) If two distinct points are known, calculate the slope of the line segment joining the two points, select one of the points and revert to Case 2.
Example of Case 2: Find the linear equation in two variables whose graph has slope 3 and passes through the point (4, -3).
Solution: Since the desired equation is linear in two variables, it has the form y = mx + b.
Since its slope is 3, it has the form y = 3x + b. (*)
Since (4, -3) is on the graph, its coordinates satisfy the equation.
That means a true statement results when 4 and 3 are substituted into (*)
Using (*) we get -3 = (3)(4) + b
Solving for b yields b = -15.
Substitute that value for b into the partially determined equation given in (*) to obtain
y = 3x - 15 as the linear equation in two variables whose graph is the line which passes through the point (4, -3) with slope 3.
Alternate methods for determining the equation of a line depend on remembering formulas for each of the cases.
If the slope and y-intercept are known, use the
Slope Intercept Form of the Equation of a line
y = mx + b
If the slope and one point (x1, y1) on the line are known use the
Point-Slope Form of the equation of a line
y y1 = m(x x1)
If two points (x1, y1) and (x2, y2) are known to be on the line, then use the
Two Point Form of the equation of a Line
EMBED Equation.DSMT4
Standard Form for the equation of a line
Ax + By = C where A, B, and C are real numbers and not both A and B are zero.
The Equation of a Vertical Line has the form x = a, where a is the x-intercept of the vertical line.
Definition: The slope of the non-vertical line through two points (x1, y1) and (x2, y2) is
EMBED Equation.DSMT4
Fact: Two non-vertical lines are perpendicular if and only if their slopes are negative reciprocals of each other. The statement that they are negative reciprocals of each other may be stated algebraically with any one of the following equations.
EMBED Equation.DSMT4
Fact: Two non-vertical lines are parallel if and only if they have different y-intercepts and they have the same slopes.
The following formulas are not related to linear equations, but are useful formulas to remember. To aid in the solution of certain word problems these formulas are frequently presented with the discussion of linear equations in two variables.
Fact: The midpoint of the line segment joining two points (x1, y1) and (x2, y2) is the point
EMBED Equation.DSMT4
Fact: The distance between two points (x1, y1) and (x2, y2) is
EMBED Equation.DSMT4
Last printed PRINTDATE \@ "M/d/yyyy h:mm:ss am/pm" 6/11/2014 9:47:00 AM
PAGE
PAGE 1
FILENAME \p C:\Users\Del\Dropbox\myMathematics\WordDocuments\Equations\Copy of Introduction to Linear Equations for Intermediate Algebra.doc
):;FIJYj 4 m ~ Ǽ~p~bSGS;h B*CJaJphhB*CJaJphhhB*CJaJphhTB*CJ\aJphhc8B*CJ\aJphh B*CJ\aJph hnhTB*CJ\aJphh 5B*CJaJph h%*hT5B*CJaJphhfhTCJaJhfCJaJh}hT5>*B*phhTB*CJphh B*phhTB*phh_B*ph;
*
+RS ^ `gdR3gdR3 ^ `gdc8gdgdTgdc8gdT
:
;
O
W
i
j
k
$%Q]^_delv;<ABYas
¶¶¶h
B*CJaJphhc8B*CJaJphh B*CJaJphhB*CJaJph hah5B*CJaJph hhB*CJ\aJphhhB*CJaJph>
*
.
R
'8+/ƺƺƟ~sks]L]s] hnhR3B*CJ\aJphhR3B*CJ\aJphh CJaJhfhR3CJaJhR3CJaJhl0hR35>*B*phhR3hR3B*phhR3hR3B*CJaJphh B*CJaJphhc8B*CJaJphhR3B*CJaJph hR3hR35B*CJaJphhTB*CJaJph hhB*CJ\aJph/S"/BRWXbcpz!+QR :KdgоггЪyh CJaJhfhT6CJaJhaCJaJhc8hc8CJ\aJhc8CJ\aJhTCJ\aJhR3hR3CJaJh CJ\aJhR3CJ\aJhR3hR3CJ\aJhR3CJaJhfhTCJaJ hnhTB*CJ\aJph*+,0X189EFJrU`wz~vhoCJaJhCJaJh CJaJhfhR3CJaJh\ZCJaJhR3CJaJhfhT5CJaJhfhTCJaJhnhTB*CJaJphh}B*CJaJphh}CJaJhfh}5>*B*ph3fh}h}5>*B*ph.01U0{
;jvw^gda^`gda^gda^gdagdT
9Jbh;Ojvƻ홐vvdUUhfhT5CJH*\aJ#h}hT>*B*KH\aJphhfhTCJH*aJhfhT5CJ\aJhfhTCJ'h}hT>*B*CJKH\aJphhhT5>*B*phhfh
CJaJhTCJaJhfh]lCJaJh CJaJhfhT5CJaJhfhTCJaJh]lCJaJHqst !"gdzigdT^gda^gda^`gda
FHVqruvȴ횅v\K!h%*>*B*CJKH\aJph3jhh5B*CJEHH*U\aJph3fjE
hCJUVaJ)jh5B*CJH*U\aJph3f h5B*CJH*\aJph3fhfhTCJ'h}hT>*B*CJKH\aJphhfhT5CJ\aJhfhTCJH*aJhfhTCJaJ#hfhT5B*CJ\aJph3f+,.rst"ŽšŕŕŕŕŇ~o\SGhzihziCJH*aJh
CJH*aJ$jhhCJEHH*UaJjRE
hCJUVaJhCJH*aJjhCJH*UaJhfhTCJH*aJ h%*hT5B*CJaJphhfhnCJaJhTCJaJhfhTCJaJh%&5B*CJ\aJph3f#hfhT5B*CJ\aJph3fh}hT5>*B*ph"/st %BJK}γumememememememe]emh CJaJhziCJaJh
CJaJh%*hT5CJaJh}hT5>*B*phhiqh%&CJaJhTCJaJ!jghhCJEHUaJjVE
hCJUVaJjhCJUaJhCJaJhfhT5CJ\aJhfhTCJaJ h%*hT5B*CJaJph# "')-5HJLMPQkYQhziCJaJ#hfhzi5B*CJ\aJph3f*jhhzi5CJEHH*U\aJjQE
hziCJUVaJhzi5CJH*\aJ j!
hzi5CJH*U\aJhfhzi5CJ\aJhfhziCJH*aJ h%*hzi5B*CJaJphhfhziB*CJaJph3fh}hzi5>*B*phhfhziCJaJQYZ]^cquvϾϯώwhwh[hwWhohMrCJaJmHnHujhohoCJUaJhohoCJaJhjhUhfh}CJaJ*jhhzi5CJEHH*U\aJjPE
hziCJUVaJ j
hzi5CJH*U\aJhzi5CJH*\aJhfhzi5CJ\aJhfhziCJH*aJhfhziCJaJ"c h]hgdn&`#$gdygdzi ϴϨ뤙hfh}CJaJhhoh%*5CJaJhMr5CJaJmHnHuhoho5CJaJ jhoho5CJUaJh/0JmHnHuh%*
h%*0Jjh%*0JU61h/R :pc8/ =!"@#$%Dd
P
b
c$A??3"`?2)u!6|53l[D`!u!6|53l[@xڵMhAGd("=ĚB6JiRuHҔ6PCMI=Z1TG)4%vUQ7F~C-JVKI8Aqb=qY-Q4Qo?\,)E۳(K.-އQp)I1pY|256)2:XaY|~"\({/^/x|f~o;N{ެC(7g9'
2~U`T؟nhZ"摏p{"ށ6-!tڡBw65P.59OS`͋f?G
\YO䙓?u;hGDH(btRηpWQ$IcC{BkZ#m'BFBNY-!}[˒6mh}!nk5{_8խCr 3FeF+.ް/=.dDd
b
c$A??3"`?2#{|0#`!#{|0
@2txڵTAkA~3I4!Dh-,x&ih.bRhJ$ BP%/B^Tp}3iC|7f
.I qmtty)(/# DQX;PqC<Ĺ2\x\<# %6Pi"@"}ݎpC3)[|NddPuh'䍦Yۀǯ&Np6`BLF2hC"5ްjP7U>zZh=-c>RNhqƼR`Rk^i
zZ7ٕO[ݎ:Vj}"\74нċo<-~\9hfn+:ݰ{N/UK@F#_k}
1db%+4F!bӪAg܊F3*ZA^GF^5(+rђu o.~^`E[8f v%K.B>< Dx*=iԄ ԛ7e0RRv߂~s{Ta)*v0[}sɼ`^[Dd
b
c$A??3"`?2tfY|֡F6`!tfY|֡F64%@2xڥTkA3mj(]z)ݠ!`h.`=xH.6%H
ŻP
ūڃ"{7/dvg7o7g/VJF[Ej(.;Gt0X/էZudrYVWRJ,{kXǥϺc+z'^Dq'kŴ^4QNEzNNcƹK_i8v7>swT{~8'MvݔZT1Kf+vV)VZW0*8$.k@Wc(inV%",\+?
4Ԟ(]S|^
Vwmڢ
S_*B*jeh2qAVGx_Nx?|3
z?~{JO?w:x֜
WJd*6JӵBـ2ɫ4k%.sXݬaOd:s3[ɅǏ1''N`ƼԪɲ\8k#i8B7+XgU CGS
ڌI*+q:u)/ved훉0[~ޭι"[YEî|~I^1
ېDd
b
c$A??3"`?2DntΝB3c `!ntΝB3c`@ xڥTOQ7ot[.F%Z H# #p!RBb0ȪM(%{0!!!ފHJb&=Q@ABCDEFGHIJKLMNORoot Entry FΟ.Data
"WordDocument8BObjectPool @Ο_1170915304F@@Ole
CompObjiObjInfo
!"#&)*+,-.1456789;<=>?@BCDEFGI
FMathType 5.0 EquationMathType EFEquation.DSMT49q¨HD DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_G_H_BHAHAE_E_E
y"-y1
Equation Native _1170915922F@@Ole
CompObj
i==y1
"-y2
x1
"-x2
()x"-x1
()
FMathType 5.0 EquationMathType EFEquation.DSMT49qObjInfo
Equation Native _1170919510F@@Ole
¼HT DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_G_H_BHAHAE_E_E
m==y1
"-y2
x1
"-x2
==y2
"-y1
x2
"-x1
FMathType 5.0 EquationMathType EFEquation.DSMT49qH DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_G_H_BHAHAE_E_E
m1
==CompObjiObjInfoEquation Native _1170915921F@@"-1m2
or m2
=="-1m1
or m1
m2
=="-1
FMathType 5.0 EquationMathType EFEquation.DSMT49qOle
$CompObj%iObjInfo'Equation Native (fH4 DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_G_H_BHAHAE_E_E
x1
++x2
2,y1
++y2
2()_1170915920F@@Ole
/CompObj0iObjInfo2
FMathType 5.0 EquationMathType EFEquation.DSMT49qHd DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_G_H_BHAHAE_E_E
d==
x1
"-x2
()Equation Native 31Table?!SummaryInformation(:DocumentSummaryInformation8A2
++y1
"-y2
()2Oh+'0x
(4@
LX`hp,Important Properties of Linear EquationsDelano WegenerNormal.dotmDel Wegener2Microsoft Office Word@G@
@@PM_ff8@%l|11,]f'[ݸ vz-!KFxVXآ'NT⩩ s,~a\~gK3/Ra
LwCP->zmMb2
(
UQc:>;7?4J4*`%t:^*oX^fekNZ>9h۸3JB?m&G~0Gs8Is<o?6[#7uD\cedGv_%#nLod3=zxWUf,?
T{*m~ye]
̎+
yZ{47M5ezz{Njk4GRJ7%sO'(xڡxll3Kʎ{Ft_y:w}]icR8AWpO~j25Pu뷴Po2iuX=yЙ$>+ٹlhKPu*YȤiAF52NHMYMeTqٽͻ~aeD-u{-;9+=ϙ^MzJvĆ37edNuDŝ
ozG ՜.+,D՜.+,Thp|
*)Important Properties of Linear EquationsTitleH 6>
MTWinEqns^2 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~_HmH nH sH tH @`@NormalCJ_HaJmH sH tH X@XT Heading 1$5$7$8$@&H$5B*KH\aJph3f\@\T Heading 2$5$7$8$@&H$5B*CJ KH\aJph3fDA`DDefault Paragraph FontViVTable Normal :V44
la(k (No ListH>@HTTitle$5$7$8$H$a$5CJ KHaJ4 @4nFooter
!.)@.nPage NumberL^@"LNormal (Web)dd[$\$ B*ph*W1*Strong5\4@B4oHeader
!PK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭V$!)O^rC$y@/yH*)UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f
W+Ն7`gȘJj|h(KD-
dXiJ؇(x$(:;˹!I_TS1?E??ZBΪmU/?~xY'y5g&/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ
x}rxwr:\TZaG*y8IjbRc|XŻǿI
u3KGnD1NIBs
RuK>V.EL+M2#'fi~Vvl{u8zH
*:(W☕
~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4=3N)cbJ
uV4(Tn
7_?m-ٛ{UBwznʜ"ZxJZp;{/<P;,)''KQk5qpN8KGbe
Sd̛\17 pa>SR!
3K4'+rzQ
TTIIvt]Kc⫲K#v5+|D~O@%\w_nN[L9KqgVhn
R!y+Un;*&/HrT >>\
t=.Tġ
S; Z~!P9giCڧ!# B,;X=ۻ,I2UWV9$lk=Aj;{AP79|s*Y;̠[MCۿhf]o{oY=1kyVV5E8Vk+֜\80X4D)!!?*|fv
u"xA@T_q64)kڬuV7t'%;i9s9x,ڎ-45xd8?ǘd/Y|t&LILJ`& -Gt/PK!
ѐ'theme/theme/_rels/themeManager.xml.relsM
0wooӺ&݈Э5
6?$Q
,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧60_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!0C)theme/theme/theme1.xmlPK-!
ѐ' theme/theme/_rels/themeManager.xml.relsPK]
(B Yd
/"Q " uu:::::AVY`dkmo}!!8@0(
B
S ?):;;Yjm~Wias'8:
K
""9Jbh}):;EYjm~Wias'8:
K
9J}/+dc%*6rs
zze]~ F"!F#=.$%&u*-q-R36o5|D7d8{A B?GwHrQIMJ)N^~PRTdgV_YZ\Z>
_zsfzizjMrNrjs.vR2]liiq*RXBe\W/<Tt/#y]$ "0J }Xyc8&sv-+'Tl0_afo.nT.b
E
,i=&Y*)}@@@UnknownG*Ax Times New Roman5Symbol3.*Cx ArialA$BCambria Math"hZ&gZ&goZ&g**!243HP ?T!xx(Important Properties of Linear EquationsDelano WegenerDel WegenerCompObjHr
F Microsoft Word 97-2003 Document
MSWordDocWord.Document.89q